Unsupervised Hierarchical Domain Adaptation for Adverse Weather Optical Flow

نویسندگان

چکیده

Optical flow estimation has made great progress, but usually suffers from degradation under adverse weather. Although semi/full-supervised methods have good attempts, the domain shift between synthetic and real weather images would deteriorate their performance. To alleviate this issue, our start point is to unsupervisedly transfer knowledge source clean target degraded domain. Our key insight that does not change intrinsic optical of scene, causes a significant difference for warp error images. In work, we propose first unsupervised framework via hierarchical motion-boundary adaptation. Specifically, employ image translation construct transformation relationship domains. motion adaptation, utilize consistency align cross-domain flows into motion-invariance common space, where used as guidance-knowledge obtain preliminary Furthermore, leverage inconsistency which measures misalignment boundary domains, joint intra- inter-scene contrastive adaptation refine boundary. The jointly promotes in unified framework. Extensive quantitative qualitative experiments been performed verify superiority proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Boosting for Unsupervised Domain Adaptation

To cope with machine learning problems where the learner receives data from different source and target distributions, a new learning framework named domain adaptation (DA) has emerged, opening the door for designing theoretically well-founded algorithms. In this paper, we present SLDAB, a self-labeling DA algorithm, which takes its origin from both the theory of boosting and the theory of DA. ...

متن کامل

Unsupervised Transductive Domain Adaptation

Supervised learning with large scale labeled datasets and deep layered models has made a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers generalization issues under the presence of a domain shift between the training and the test data distribution. In this regard, unsupervised domain adaptation algorithms have been proposed to directly address t...

متن کامل

Correlation Alignment for Unsupervised Domain Adaptation

In this chapter, we present CORrelation ALignment (CORAL), a simple yet effective method for unsupervised domain adaptation. CORAL minimizes domain shift by aligning the second-order statistics of source and target distributions, without requiring any target labels. In contrast to subspace manifold methods, it aligns the original feature distributions of the source and target domains, rather th...

متن کامل

Subspace Distribution Alignment for Unsupervised Domain Adaptation

We propose a novel method for unsupervised domain adaptation. Traditional machine learning algorithms often fail to generalize to new input distributions, causing reduced accuracy. Domain adaptation attempts to compensate for the performance degradation by transferring and adapting source knowledge to target domain. Existing unsupervised methods project domains into a lower-dimensional space an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i3.25490